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Abstract Definition of clear criteria for evaluation of the

quality of core collections is a prerequisite for selecting

high-quality cores. However, a critical examination of the

different methods used in literature, for evaluating the

quality of core collections, shows that there are no clear

guidelines on the choices of quality evaluation criteria and

as a result, inappropriate analyses are sometimes made

leading to false conclusions being drawn regarding the

quality of core collections and the methods to select such

core collections. The choice of criteria for evaluating core

collections appears to be based mainly on the fact that

those criteria have been used in earlier publications rather

than on the actual objectives of the core collection. In this

study, we provide insight into different criteria used for

evaluating core collections. We also discussed different

types of core collections and related each type of core

collection to their respective evaluation criteria. Two new

criteria based on genetic distance are introduced. The

consequences of the different evaluation criteria are illus-

trated using simulated and experimental data. We strongly

recommend the use of the distance-based criteria since they

not only allow the simultaneous evaluation of all variables

describing the accessions, but they also provide intuitive

and interpretable criteria, as compared with the univariate

criteria generally used for the evaluation of core collec-

tions. Our findings will provide genebank curators and

researchers with possibilities to make informed choices

when creating, comparing and using core collections.

Introduction

Ex-situ germplasm collections have increased enormously

in number and size over the last three to four decades as a

result of global efforts to conserve plant genetic resources

for food and agriculture. The large sizes of many of these

collections, either individually or collectively for a given

species complicate the characterisation, evaluation, util-

isation and maintenance of the conserved germplasm. The

approach of forming core collections was introduced to

increase the efficiency of characterisation and utilisation of

collections stored in the genebanks, while preserving as

much as possible the genetic diversity of the entire col-

lection (Frankel 1984; Brown 1989). Frankel (1984)

defined a core collection as a limited set of accessions

representing, with minimum repetitiveness, the genetic

diversity of a crop species and its wild relatives. From the

original definition, several operational definitions have

been coined (see Brown 1995 and van Hintum et al. 2000).

Core collections have many roles to play in the man-

agement and use of genetic resources. Genebank curators

have the responsibility for conservation, regeneration,

safety duplication, documentation, evaluation and charac-

terisation as well as facilitating access to the genetic

resources in their collections. These activities often require

them to make choices or to set priorities among accessions

because of limited resources (Brown 1995). Because a core
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collection is smaller in size compared to the whole col-

lection, it enables some operations of the genebank, such as

evaluation (of the selected accessions), to be handled more

efficiently and effectively. The reduced size of a core

collection is a key to its manageability and, in many cases

the representation of the total collection’s diversity enables

the core to function as a reference set of accessions for the

whole collection (Brown and Spillane 1999).

Since the inception of the idea of core collections over

two decades ago, a body of literature on the theory and

practice of core collections has accumulated. Very many

approaches for selecting core collections have been pro-

posed and used (e.g. M-Strat (Gouesnard et al. 2001),

Genetic distance sampling (Jansen and van Hintum 2007),

PowerCore (Kim et al. 2007) and CoreHunter (Thachuk

et al. 2009)). In comparing the options for assembling a

core collection, one of the challenges is to decide on the

evaluation criteria for the quality of the result. Various

criteria for determining the quality of a core collection

have been suggested in the literature, yet very little atten-

tion has been given to the analysis of these quality criteria.

In fact every researcher appears to have his/her own criteria

for the evaluation of core collections.

Thus there is a need to clearly define criteria for the

evaluation of the quality of core collections and to relate

the different types of core collections to those criteria. For

example, a core collection formed for the purpose of cap-

turing accessions with rare or extreme values of the desired

trait(s) (e.g. high resistance to pest or high yield) should be

evaluated differently from one formed with the intention of

representing the (pattern of) genetic diversity in the col-

lection. By the pattern of genetic diversity we refer to the

genetic differences among all the accessions which have

been accumulated as a result of natural processes, species’

characteristics and historical events.

The debate whether to have a single or several core

collections for a given genebank collection is an old but

still an interesting one (see Mackay 1995). The initial idea

behind a core collection favoured the creation of a fixed

core collection, possibly modified in time to accommodate

new knowledge and new diversity (Brown 1989). How-

ever, there is evidence from the literature to suggest that

genebanks are creating different core collections to repre-

sent specific sections of their germplasm collections, e.g.

Chilean bean core collections (Paredes et al. 2010) and

Iberian peninsula common bean core collections (Rodino

et al. 2003) and to cater for specific projects. As pointed out

by Mackay (1995), to support better the use of available

germplasm, sets of diverse accessions need to be estab-

lished with different selection criteria in mind. This idea is

best captured by a computer programme ‘‘core selector’’

developed at Centre for Genetic Resource, The Netherlands

(CGN), where a user is allowed to select online a

maximum diversity subset of accessions that meets his/her

selection criteria (van Hintum 1999). These selections

could be considered core collections since they are repre-

sentative of the genetic variation of a larger group of

germplasm accessions. This concept of objective driven

core collection deviates from the original idea of the core

collection. Brown (1995) recommended that such objective

driven subsets of accessions should have name tags that

indicate their purposes rather than call them core (e.g. acid

tolerant set). Irrespective of the name, it is clear from lit-

erature that these objective driven diverse selections are

quite popular. Recent developments in computer science,

molecular biology and biochemistry suggest that the gen-

eration, storage and processing of data from germplasm

will cease to be a limiting factor when creating diverse

selections.

It should be noted that we are in no way suggesting that

the fixed core collection no longer has merits; the compi-

lation of information on representative samples of a given

collection still adds value to all accessions. The mini-core

collections and reference sets (Odong et al. 2011b;

Upadhyaya et al. 2009) as initiated by the Generation

Challenge Program of the CGIAR are good examples of

core collections serving that purpose. It is important to note

that irrespective of the type of core collections, appropriate

optimisation and evaluation criteria should be used in

creating and evaluating these selections.

In this paper, we will (1) discuss the different types of

core collections and proposed criteria appropriate for

quality evaluation of each type of core collection; (2)

discuss the different criteria used in the literature for

evaluating the quality of core collections and relate each

criterion to the different types of core collections; (3) use

real data sets (molecular marker data) to illustrate the

performance of the proposed quality evaluation criteria

with respect to the different types (and purposes) of core

collections. The outcome of our study will allow

researchers and curators to make informed choices from a

set of alternative approaches.

What is a good core collection?

One of the key goals of defining a core collection is the

efficient utilisation of available genetic resources and this

is best achieved by having clear objectives in mind when

selecting entries for the core (Mackay 1995). The answer to

the question ‘‘what is a good core collection’’ therefore

depends on the objectives for making the core. This can be

‘‘conserving as much variation (phenotypic or genotypic)

as possible in as few as possible accessions’’ or ‘‘optimis-

ing the chance of finding a new allele’’. A second question

is how to measure quality of the core collection, and this

will depend on the type of data available for evaluation.
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According to Brown (1989), a good core collection

should have no redundant entries (an entry is an accession

included in the core), represent the whole collection with

regards to species, subspecies and geographical regions and

should be small enough to be easily managed. It was

suggested by Marita et al. (2000) that core collections can

be created with two general purposes in mind (1) maxi-

mising the total genetic diversity in a core (as sometimes

favoured by taxonomists, and geneticists as well as gene-

bank curators) and (2) maximising the representativeness

of the genetic diversity of the whole collection in a core

collection (as sometimes favoured by plant breeders).

Accordingly, maximising the representativeness of genetic

diversity implies also the inclusion of broadly adapted and

heterotic materials containing ‘generalist’ alleles in a core

collection. Earlier, Galwey (1995) stated the above two

purposes of core collections in a slightly different way as:

(1) maximising the representativeness of the full range of

variation present in the whole collection; (2) maximising

the representativeness of the pattern of variation present in

the whole collection.

There is also an aspect of balance between representing

total diversity and the usefulness of the core to the intended

user (Brown 1995). This can be illustrated with some

examples. If a breeder searches for accessions with a spe-

cific trait of interest (e.g. acid tolerance), it is likely that the

best core collection should contain relatively more material

from the primary genepool (see Harlan and de Wet 1971

for description of different types of genepools) as com-

pared to the secondary or tertiary genepool, irrespective of

the amount of diversity within the primary genepool since

there will be a strong preference for material in an adapted

genetic background. Although the chances of getting a rare

allele might be higher in the secondary or tertiary genepool

compared to primary genepool, it is probably cheaper to

evaluate more accessions from the primary genepool than

to use material from the tertiary or secondary genepool in

the breeding program. If a core collection is created in the

search for new resistances, the part of the whole collection

originating for example from area(s) that in the past had

shown to contain resistances should obviously be over-

represented. This implies that the user is often not pri-

marily interested in maximising diversity per se (which

could result in core collections with mainly wild and exotic

material), but rather in optimising the chance of finding

accessions that he/she is looking for as material which is

relatively easy to use in for instance a breeding pro-

gramme. To achieve this, the selection of a core collection

often starts with stratifying accessions into homogeneous

groups (a group can be collection of accessions with sim-

ilar characteristics, e.g. phenotype, genotypes or region of

origin), followed by an arbitrary determination of the

number of accessions to be selected from each group, the

so-called allocation. When a core collection is being

formed for a specific user, the stratification and allocation

processes can be used to ensure that accessions from

(a) particular group(s) (e.g. primary gene pool, modern

varieties or Ethiopian landraces) are given more priority

than justified by the genetic variation contained in that

group. Since each user or curator most often define their

own methods for stratification (dividing accessions into

groups) and for determining the number of accessions to

select from each group, it is difficult to setup uniform

criteria for evaluating those objective driven core

collections.

From the literature, it is not clear how to relate the

purpose of the core collections with the various quality

evaluation criteria, and only very few authors have

attempted this (e.g. Thachuk et al. 2009). Based on the

purposes of core collections as suggested by Galwey

(1995) and Marita et al. (2000), we have identified three

broad types of core collection which will be discussed in

the next section. We relate each of the three types of core

collections with their respective evaluation criteria.

Types of core collections

Based on the purposes for which they are formed core

collections can generally be classified into three types or

categories (i.e. core collections representing (1) individual

accessions; (2) extremes; and (3) distribution of accessions

in the whole collection). In defining the types of core

collections, the term ‘‘accessions’’ refers to elements that

constitute the whole collection and ‘‘entries’’ are elements

of the core collection. Since the core collection is a

selection from the whole collection, all entries are acces-

sions, but only few accessions are entries.

Type 1

A core collection representing the individual accessions of

the whole collection (CC–I). In this case each entry in the

core collection represents one (itself) or more accessions

that jointly make up the whole collection. Each accession

in the whole collection is represented by an entry in the

core which is most similar to it.

This type of core collection (CC–I) aims at a uniform

representation of the original genetic space, with equal

weights across this space and is the most intuitive way of

looking at core collection (see Fig. 1). A core collection of

type CC–I is especially suitable, for situations requiring an

overview of the genetic diversity of the accessions of the

whole collection. Core collections formed for the purposes

of maximising the representativeness of genetic diversity

as suggested by Marita et al. (2000) can be placed in type
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CC–I. By ensuring that all accessions in the entire collec-

tion are maximally represented, core collections of type

CC–I provide the best option for obtaining a single ‘‘multi-

purpose’’ or generalist core collections compared to any

type of core collection.

Type 2

A core collection representing the extremes of the whole

collection (CC–X). Implication the diversity of the traits of

the entries of the core collection is maximised.

A core collection of type CC–X is geared towards rep-

resenting the ranges of phenotypes, genotypes or alleles of

the whole collection. A good core collection of type CC–X

has entries that are as different as possible from each other.

A core collection representing the total genetic diversity, as

suggested by Marita et al. (2000), can be considered as a

core collection of type CC–X.

Type 3

A core collection representing the distribution of accessions

of the whole collection (CC–D). In this case, when creating a

core collection one ensures that the proportion of accessions

in that core collection reflects the numerical contributions of

the different regions or categories to the whole collection.

For example, if the majority of the accessions come from a

given geographical region, then the core collection should

adequately reflect the importance of that region.

Implication the distributions of all relevant traits over

the entries of the core are similar (in terms of mean, var-

iance, quartiles, frequencies) to those of the whole

collection.

In our opinion, this core collection of type CC–D is only

of interest if the aim is to give an overview of the com-

position of the whole collection using only a part of the

collection. This type of core collection will be obtained by

maximising the representativeness of the pattern of varia-

tion of traits in the whole collection, as suggested by

Galwey (1995).

Based on the criteria used for the evaluation of core

collections in literature, it appears that either most of the

core collections are intended to be of type CC–D or they

were evaluated with inappropriate criteria (Diwan et al.

1994), sesame core collection: China (Xiurong et. al 2000),

Iberia Peninsula common bean (Rodino et al. 2003),

groundnut (Upadhyaya 2003), peanut (Valencia) (Dwivedi

et al. 2008), USDA soybean core (Oliveira et al. 2010).

This could be an indication of the desire of researchers to

have a single ‘‘multi-purpose’’ core collection from which

one could extract materials for different purposes. It should

be noted that by insisting on selecting a core collection that

reproduces the distribution of traits in the whole collection

one ignores the issue of redundancies and over represen-

tation. As we stated earlier, for researchers aiming at a

‘‘multi-purpose’’ core collection the CC–I type of core

collection would be the much better option compared to the

CC–D type.

Fig. 1 a Multimodal trait

distribution of for whole

collection; b distribution of the

same trait for a collection of

type CC–I; c distribution of the

same trait for a core collection

of type CC–X; d distribution of

the same distribution for a

collection of type CC–D
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The different types of core collections have been illus-

trated graphically using a multimodal univariate distribu-

tion for the whole collection (Fig. 1).

Quality criteria for evaluating core collections

The process of evaluating a core collection usually

involves a comparison with the whole collection from

which it has been obtained, or a comparison with alterna-

tive core collections (core collected created using different

methods). This requires clear and objective criteria for

assessing the quality of the different types of core

collections.

Irrespective of the type of core collection and the quality

criterion used, the evaluation of quality should be based if

possible on data (traits or characteristics) that were not

used in the selection of the core (van Hintum et al. 2000).

This might sound like an obvious statement, but it is very

often neglected (e.g. Tai and Miller 2000; Wang et al.

2007). For example, one has a dataset of 1,000 accessions

each genotyped with 50 markers, and the objective is to

create a core collection of 20 entries with maximal allelic

richness. If it would concern only the current 50 markers,

this would be a simple optimisation problem. However, the

question is, ‘‘what if the core collection should also be

‘allelic rich’ for all loci that were not genotyped?’’ One

option would be to use half the markers for creating core

collections, and the other half for evaluating the quality of

the resulting core collection(s) (for a good examples see

Mckhann et al. (2004); Ronfort et al. (2006); Balfourier

et al. (2007)). Once the best strategy has been determined

this strategy could then be used on the entire set of markers

to create the final core collection. Since often molecular

data will be used to select a core that is also supposed to

optimise the representation of phenotypic diversity, rele-

vant phenotypic traits should be used for the validation as

well.

In this article, we place emphasis on evaluation criteria

that are based on genetic distances between accessions. The

main advantage of using genetic distance for evaluation of

core collections is that unlike the other criteria used in

literature which handle one variable at a time, all the

variables are used simultaneously. It is also easier and

more intuitive to link distances to the concept of genetic

diversity.

Evaluation of type CC–I

A good criterion for the evaluation of a CC–I core should

be able indicate how well each accession in the whole

collection is represented in the core collection. This

involves establishing the relationships between each

accession in the whole collection with the entries of the

core collection. The relationship between accessions and

entries is best represented by genetic distances between.

For CC–I, we proposed a criteria based on distances

between each accession in the whole collection and the

nearest entry in the core collection (A–NE) (see Fig. 2a, b).

Average distance between each accession and the nearest

entry (A–NE) (Odong et al. 2011b)

In this case, the distance between each accession and the

nearest entry in the core is calculated and averaged over all

the accessions. For the selected accessions (entries) these

Fig. 2 a Eight accessions (1, 2, …, 8) in a 2D space with all pairwise

distances (the distance between accession i and j is indicated as Di-j).

b The three selected entries (highlighted accessions) based on the

A–NE criterion, minimising the average distance between each

accession and it nearest neighbouring entry (D1-2 ? D2-2 ?

D3-3 ? D4-2 ? D5-6 ? D6-6 ? D7-6 ? D8-6)/8
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distances are taken as zero (they are closest to themselves).

For example, the value A–NE for Fig. 2 is given as:

A�NE

¼ ðD1�2 þ D2�2 þ D3�3 þ D4�2 þ D5�6 þ D6�6 þ D7�6 þ D8�6Þ
8

where Di�j (i, j = 1, 2, …, n; n is the number of accessions

in the whole collection).

For core collections of type CC–I, the value of A–NE

should be as small as possible; the maximum representa-

tion (A–NE = 0) is obtained when each accession is rep-

resented by itself or by an identical duplicate accession in

the core. In core collections that optimise the values of

A–NE (CC–I type of core), the accessions selected as

entries tend to be those at the centres of clusters (i.e.

groups) rather accessions on the outer layer of the clusters.

Evaluation of type CC–X

A good criterion for a core collection of type CC–X (rep-

resenting the extreme values) should be able to quantify

differences between entries of the core collection as well as

being able to measure the inclusion or exclusion of

accessions with extreme values of the relevant traits in the

core. The most intuitive criteria for determining differences

between entries in the core collection are those criteria

based on pairwise distances. The exclusion or inclusion of

accessions with extremes values in the core can be assessed

using frequencies of traits or alleles captured (see Thachuk

et al. 2009). Below we propose a new criterion based on

distances between an entry and the nearest neighbouring

entry (E–NE) and compare it with criteria based on average

pairwise distances between all entries.

Average distance between each entry and the nearest

neighbouring entry (E–NE)

According to this criterion (E–NE), a good core collection

is one that maximises the average distance between each

entry and the nearest neighbouring entry in the core col-

lection. For this criterion, each entry should be as different

as possible from each other. This avoids selecting a few

clusters of similar accessions at the extreme ends of the

distribution, that might occur if one chooses a set of entries

that maximises the average of all pairwise distances

between the entries in the core (E–E) (see Fig. 4). When

calculating E–NE only a subset of pairwise distances

between the entries are used. Using example in Fig. 3, if

accessions 1, 3 and 7 are selected as entries in the core

collection, and if we assume that; (i) entry 1 is the nearest

neighbouring entry to both 3 and 7 (D3�1\D3�7 and

D7�1\D7�3); and (ii) entry 3 is the nearest neighbour to

entry 1 (D1�3\D1�7) then E–NE is given as:

E�NE ¼ ðD1�3 þ D3�1 þ D7�1Þ
3

where Di�j (i, j = 1, 2, …, n; n is the number of accessions

in the whole collection)

Average genetic distances between entries (E–E)

Maximising the average genetic distance between entries

of a core collection has been suggested as a desired quality

criterion for evaluating core collections intended for plant

breeders (Franco 2006, Thachuk et al. 2009). Using

example in Fig. 3, E–E are given as:

E�E ¼ ðD1�3 þ D1�7 þ D3�7Þ
3

Fig. 3 a Eight accessions

(1, 2, …, 8) in a 2D space

with all pairwise distances

(the distance between accession

i and j is indicated as Di-j).

b The three selected entries

(highlighted accessions) based

on the E–NE criterion

maximising distances between

each entry and the nearest

neighbouring

(D1-3 ? D3-1 ? D7-1)/3
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where Di�j (i, j = 1, 2, …, n; n is the number of accessions

in the whole collection).

Figure 4 provides a simple numeric and graphical

comparisons of the three distance-based criteria discussed

above. Although both E–E and E–NE are suitable for the

CC–X type of core, as illustrated in Fig. 4c core collections

with a high average distance between the entries (E–E) can

still have a high level of redundancies. It is clear from

Fig. 4 that despite having the highest E–E (0.573 vs. 0.491

and 0.467) the core collection in Fig. 4c, some entries in

Fig. 4c are too close to each other to be included in a core

collection as reflected by a low value of E–NE. Figure 4a

indicates that minimisation of A–NE leads to the selection

of accessions from the centres of clusters compared to E–E

and E–NE which select accession at the periphery of

clusters.

Evaluation of type CC–D

Ideal criteria for evaluating a core collection of type CC–D

should be able to compare many distributional aspects

simultaneously: centre (mean, mode), spread (variance,

range), shape (symmetry, skewness, number of modes) and

unusual features (gaps, presence of outliers) of all data

simultaneously. For continuous data, we propose the use of

quantile–quantile plots (Gnanadesikan and Wilks 1968)

which provide a visual comparison for two data sets using

several distributional aspects of the data simultaneously.

We also recommend the use of Kullback–Leibler distance

(Kullback and Leibler 1951) which measures the distance

between probability distributions and can be used to

compare the difference in probability distribution between

the core collection and the whole collection. A brief

description of Kullback–Leibler distance is presented in

Electronic Supplementary Material (Appendix 1).

QQ plot

Compared to simple comparison of means or variances the

QQ plot gives a much better overall visual view of how the

distribution of a given trait differs between the core col-

lection and the whole collection. A QQ plot is a graphical

method for comparing two probability distributions by

plotting corresponding quantiles against each other. If the

two distributions are similar, the points in the QQ plot will

lie approximately on a straight line. A QQ plot is generally

a more powerful approach for comparing distributions than

the common technique of comparing histograms of the two

Fig. 4 Examples of core

collections, showing the effect

of optimisation of different

criteria on the positioning of

entries (red stars) within the

distribution of accessions

(circle) for each core collection,

the value of all three evaluation

criteria are given: a the average

distance between each accession

and the nearest entry (A–NE) is

minimised (E–E = 0.467;

E–NE = 0.180;

A–NE = 0.038) b the average

distance between an entry and

the nearest other entry (E–NE)

is maximised (E–E = 0.491;

E–NE = 0.241;

A–NE = 0.056) c the average

distance between entries (E–E)

is maximised (E–E = 0.573;

E–NE = 0.118; A–

NE = 0.094). Thus, for E–E

and E–NE, the larger the value

the higher the quality of the core

collection, the opposite is true

for A–NE
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samples, but requires more skills for correct interpretation.

A more quantitative approach for comparing the distribu-

tion of the traits in the whole collection and the core would

be to calculate the Kullback–Leibler distance between the

core collection and the whole collection. Figure 5 shows

QQ plots for the three core collections types shown in

Fig. 1. We have also used the information from QQ plot to

calculate the Kullback–Leibler distance between the dif-

ferent core collections in Fig. 1 and the whole collection.

Common methods used for evaluating core collections

in the literature

Below we give an overview of the various criteria for

evaluating core collections used in the literature and relate

them to the three types of core collection. Given that the

type of data determines how diversity in the whole col-

lection or the core collection should be quantified, we will

also try to relate the evaluation criteria to the different

types of data (see Table 1 for brief descriptions of different

types of data that are being used for selecting and evalu-

ating the quality of core collections). It should be noted that

when evaluating the quality of core collections, most

authors apply several evaluation criteria despite the fact

that those criteria are only suitable for specific aspects of

core collections. The most common criteria used for

evaluating core collections include criteria based on sum-

mary statistics, the Shannon diversity index, class/category

coverage and Chi-square tests of association (see Table 2

below for summary).

Summary statistics

Criteria based on mean, variance and other summary sta-

tistics such as coefficient of variation, range, inter-quartile

range have been used mainly to evaluate the quality of core

collections based on continuous traits (Hu et al. 2000; Tai

and Miller 2000). It involves statistical tests of differences

between means, variances and other summary statistics of

the core and the whole collection. Based on the results of

statistical tests (mainly t tests and F tests) performed on

each trait separately, several evaluation criteria (mean

difference percentage, variance difference percentage,

coincidence rate of change and variable rate of coefficient

of variation, sign test) have been suggested (see Table 3).

Criteria based on means and variances are probably

Fig. 5 QQ plots for different types of core collections shown in

Fig. 1. From both the QQ plots and Kullback distance, it is clear that

the distribution of whole collection is best represented by type 1 (CC–

D) core. The Kullback–Leibler distance (Kullback Dist) was

calculated based on values generated by the QQ plot. Random

sampling core collection is only based on 1 data set. The minimum

value of Kullback–Leibler distance is zero (for a core collection with

identical distribution to that of the whole collection)
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suitable for the evaluation of a core collection of type

CC–D and will perform very poorly with core collections

of types CC–I and CC–X.

Some authors have questioned the use of differences

between means and variances of core and whole collection

as criteria for evaluating the quality of core collections

(e.g. Kim et al. 2007). There is also a conceptual problem

when comparing a core collection and a whole collection.

Statistically a core collection is a sample from the whole

collection (i.e. a population). Thus the question is not

Table 1 Brief description of of data types used for creating and evaluating core collections

Several types of information can be used for selecting core collections. The most common type of data are (i) passport data (ii) agronomic data

and (iii) molecular marker data

Passport data

Passport data are data about the identity and origin of an accession, including its taxonomic classification, with connected knowledge about

domestication, distribution, breeding history, cropping pattern and utilisation. Example of passport data include the country of origin, the crop

type (e.g. winter or summer wheat), and pedigree

Agronomic data

Agronomic data can be continuous, discrete or categorical. Examples of continuous variables include grain yield, plant height, leaf area, etc.

Discrete variables deal with counts such as the number of fruits or the number of seeds in a pod. Categorical variables may be defined as binary

(presence or absence of a given characteristic), nominal (colour or shape of an organ) or ordinal (a visual scale arranged to represent intensity,

colour or size) (Crossa and Franco 2004). Agronomic traits are usually controlled by multiple genes and typically by environmental factors

Molecular data

Data from molecular or biochemical marker systems can be treated as either continuous (allele frequency) or categorical (presence or absence of

band or allele). Examples of popular molecular data types include those generated by single nucleotide polymorphism (SNP), amplified

fragment polymorphism (AFLP), random amplified polymorphic DNA (RAPD), and simple sequence repeats (SSR)

Table 2 Summary of common methods (criteria) used for evaluation of the quality of core collections in literature

Criteria Type of

variables

General comments

Summary statistics Continuous Compare the mean, variance, etc. of the core with that of whole collection

Comparison is done for one variable at a time and later combined

Mainly suitable for CC–D type of core collections

Principal component

analysis

Continuous Plot of the coordinates of the entries on the main principal components (exploratory) to show spatial

distribution of entries and accessions

Compare two core collections using sum of squares of the their scores along the major PCs (Suitable for

CC–X core type)

Shannon diversity

Index (SH)b
Categorical The highest value is obtained when all the categories in the whole collection are represented in equal

proportion (penalizes redundancy at the category level)

The value of SH of a given core collection should be compared with the maximum possible value (log

(n), where n is the number of classes in the whole collection)

Most authors apply this criterion inappropriately by comparing SH value of the core collection with that

of the whole collection

Suitable for CC–I core type

Class coverageb Categorical The highest value (1 or 100 %) is obtained when all the categories in the whole collection represented in

the core

Unlike SH it does not correct for redundancy in the core collection

Suitable for CC–I core type

Chi-square goodness-

of-fitb
Categorical This criterion has been used to test for the deviation of the frequency distributions of important

categorical traits between core collection and the whole collection

A good core collection is one in which the frequency distribution of the categories of the core is not

statistically different from that of the whole collection

Suitable for CC–D core type

a For all criteria except Principal component, the criterion is calculated for each variable at a time and later combined
b Can be applied to ccontinuous variables by first putting values into specific number of classes (determining the number classes is challenging)
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whether these two samples are different, but could this

sample (core collection) have come from this population

distribution (i.e. the whole collection)? So we should be

dealing with a one-sample test and not a two-sample test. It

is thus clear that the use of QQ plot (Gnanadesikan and

Wilks 1968) and probability distribution based methods

such as the Kullback–Leibler distance (Kullback and Lei-

bler 1951) would be the best option for evaluation of CC–D

types of core collections.

Apart from the criteria described in Table 3, the phe-

notypic correlation coefficient of different traits has also

been used as a criterion for evaluating the quality of core

collections (Reddy et al. 2005; Mahajan et al. 2007). The

pairwise phenotypic correlation coefficients between dif-

ferent traits are calculated separately for the core collection

and whole collection and the values are then compared in

order to determine whether the associations between traits

have between conserved well enough in the core collection.

Principal component analysis

Another exploratory criterion for evaluating core collec-

tions involves the inspection of the spatial distribution of

the entries in plots of principal components (Bisht et al.

1998; Kang et al. 2006, Mahajan et al. 2007). Based on the

method suggested by Noirot et al. (1996), it is possible to

compare two core collections or relate the core collection

with the whole collection based on the sum of squares of

the scores of the entries on the major principal components:

the greater the value, the more diverse the core collection.

This criterion would be suitable for evaluation of core

collections of type CC–X. However, it should be noted that

a core with a higher value for this criterion can still have a

high level of redundancy resulting from the inclusion of

two or more similar accessions from the extreme ends of

the distribution.

Shannon diversity Index (SH)

This criterion is suitable for evaluating core collections

using categorical data; it has been used extensively in the

literature. For a given trait, the Shannon diversity index

(Shannon 1948) is calculated as follows:

SH ¼ �
Xn

i¼1

pi logðpiÞ

where pi is the frequency of the category i and n is the total

number of categories. The SH penalizes redundancy at the

category level and its maximum value (log(n)) is obtained

when all classes are represented in equal proportions

(i.e. p1 ¼ p2 ¼ � � � ¼ pn ¼ 1=n). Therefore, in terms of SH,

the best core collection should be the one with the maxi-

mum attainable value which makes SH a suitable criterion

for core collections of type CC–I. Note that the whole

collection will never attain the maximum possible value of

SH because of redundancy associated with it. A core

Table 3 Common criteria for evaluating the quality of core collections based on summary statistics

Criteria Description

Mean difference percentage (MD)

(Hu et al. 2000a)
MD ¼ St

n

� �
� 100 where St is the number of traits with a significant difference between the means of

the whole collection and the core collection; n is the total number of traits. The lower (\20 %) the

value of MD the more representative the core collection

Variance difference percentage (VD)

(Hu et al. 2000)
VD ¼ St

n

� �
� 100 where St is the number of traits with a significant difference between the variances

of the whole collection and the core collection; n is the total number of traits. The larger ([80 %)

the value of VD, the more diverse the core collection

Coincidence rate of range (CR)

(Diwan et al. 1995)
CR ¼ 1

n

Pn

i¼1

RCðiÞ
RWðiÞ
� 100

where RCðiÞ and RWðiÞ represent the ranges of the ith trait in the core collection and the whole

collection, respectively; n is the total number of traits

Variable rate of coefficient of

variation (VR) (Hu et al. 2000)
VR ¼ 1

n

Pn

i¼1

CVCðiÞ
CVWðiÞ

� 100, where CVCðiÞ and CVWðiÞ represent the coefficients of variation of the ith trait

in the core collection and the whole collection, respectively; n is the total number of traits

The Sign (? versus -) test

(Basigalup et al. 1995,

Tai and Miller 2000)

X2 ¼ N1 � N2ð Þ2= N1 þ N2ð Þ. where N1 is the number of variables for which the mean or variance of

the core collection is greater than the mean or variance of the whole collection (number of ? signs);

N2 is the number of variables for which the mean or variance of the core collection is less than the

mean or variance of the whole collection (number of - signs). The values of X2 should be compared

with a Chi-square distribution with 1 degree of freedom

a For a core collection to be representative of the whole collection, the value of MD should not be more than 20 % and the value of CR should be

greater than 80 % (Hu et al. 2000)

298 Theor Appl Genet (2013) 126:289–305

123



collection should be expected to have higher SH values as

compared to the whole collection. Similarity of these SH

values is not an indication of a good core collection, con-

trary to what is often concluded in the literature (e.g. Bisht

et al. 1998; Upadhyaya 2003; Mahalakshmi et al. 2007;

Dwivedi et al. 2008; Upadhyaya et al. 2009).

To apply SH or other measures of diversity to continu-

ous agronomic data, the data should first be converted into

categorical data by putting them into a specific number of

classes.

Class coverage (Coverage)

This criterion reports the percentage or proportion of the

categories in the whole collection that have been retained

in a core collection (Kim et al. 2007). It is defined by:

Coverage ¼ 1

K

XK

k¼1

ACore

AWcol

 !
� 100

where ACore is the sets of categories in the core collection

and AWcol is the sets of classes found in the whole collec-

tion and K is the number of traits. According to this cri-

terion, a good core collection should retain all categories of

a given variable in the whole collection. For the case of

molecular marker data, the categories represent the number

of distinct alleles (akin to allelic richness) in the whole

collection. Class coverage is also a suitable quality crite-

rion for core collections formed with the purpose of ade-

quately representing the accessions in the whole collection

(type CC–I). When this criterion is applied to molecular

markers it will be suitable for core collections aimed at

capturing accessions with rare alleles (type CC–X).

It should be noted that unlike SH, coverage does not

take into consideration the differences in frequency of the

categories represented in the core collection so a core

collection with high coverage can still have a high level of

redundancy. Just like with SH, deciding on the number of

categories (intervals for continuous data) is a major chal-

lenge when calculating coverage.

Chi-square goodness-of-fit

This criterion has been used to test for the deviation of the

frequency distributions of important categorical traits

between core collection and the whole collection (Tai and

Miller 2000; Grenier et al. 2000; Zeuli and Qualset 1993).

Chi-square goodness-of-fit can also be used for continuous

agronomic data converted into categorical data. The Chi-

square values can be computed as:

v2 ¼
Xk

i¼1

ðCFreqi �WCFreqiÞ
2

ðWCFreqiÞ

where CFreqi is the relative frequency of accession from

category i (i ¼ 1; 2; . . .; k) in the core collection and

WCFreqi is the relative frequency of accessions from cat-

egory i in the whole collection. The number of degrees of

freedom being the number categories (classes) minus one.

This test (Chi-square) is only suitable when the interest is

in representing the distribution of traits of accessions in the

whole collection (type CC–D).

From the literature, it clear that criteria based on sum-

mary statistics and SH are the most frequently used (see

Table 4). Since most core collections in literature are

evaluated using similar evaluation criteria, one would be

tempted to believe that all those cores were obtained with

the same objective(s) in mind. We highly doubt whether all

those core collections were indeed made with the same

objective(s) in mind.

Illustration using real data sets

Description of the datasets

We used two published data sets, i.e. coconut and common

bean (Odong et al. 2011a, b) to demonstrate the importance

of choosing the right criteria for each type of core collec-

tion (see below description of the data for details). In this

section we also demonstrate that a core collection which

optimises a given criterion in one dataset may not do well

when evaluated using another dataset.

Coconut (Cocos nucifera)

The coconut data consist of 1,014 accessions of coconut

accessions genotyped with 30 SSR markers. The acces-

sions were collected from different regions of the world:

West Africa (32), North America (52), South Asia (62),

Latin America (72), Central America and the Caribbean

(109), East Africa (124), South East Asia (183) and the

Pacific Islands (380). Coconut is a diploid, mainly out-

crossing species. Most of the accessions in this set were

indicated as tall; 43 dwarf accessions were present mainly

from South East Asia. Dwarf coconuts have a high degree

of self-fertilization. Because of its usefulness, coconut has

been extensively distributed around the world. For this

study, the coconut data were selected because it contained

larger numbers of accessions of each of the diverse origins

(a typical albeit virtual genebank germplasm collection).

Common bean (Phaseolus vulgaris)

The common bean data set consisted of 603 accessions

with 296 being described as Andean and 307 as
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Mesoamerican types, genotyped with 36 SSR markers.

These accessions originated from 24 different countries

with most of them coming from Peru (184), Mexico (178),

Guatemala (61), Ecuador (35), Colombia (29) and Brazil

(22) and the remaining 18 countries contributed 94 acces-

sions. The common bean is a self-pollinating diploid spe-

cies. Twenty-nine of the 36 SSR markers used in study

belong to known linkage groups.

Comparing the performance of the evaluation of criteria

(A–NE, E–NE and E–E) when applied to different

types of core collections

The aim of this subsection is to demonstrate the importance

of using appropriate quality evaluation criteria when

evaluating the different types of core collection. We cre-

ated core collections of different sizes (5, 10, 15, …, 100)

by optimising (minimising or maximising) each of the

three evaluation criteria (A–NE, E–NE and E–E). That is,

for each quality evaluation criterion we created 20 core

collections of different sizes and each core collection was

evaluated using the other two evaluation criteria which

were not used for creating it. For example core collections

created by maximising the value of E–NE are evaluated

using A–NE and E–E criteria. Core collections which

minimises A–NE were created using Genetic Distance

Optimisation method (Odong et al. 2011b) and those which

maximise E–E were created using Corehunter (Thachuk

et al. 2009). We wrote an R programme (available on

request from the authors) for creating core collections

which maximises E–NE. For comparison purposes random

sampling was also used to create core collection of the

same sample sizes (5, 10, 15, …, 100).

For both coconut and common bean data, Fig. 6 shows

that in terms of A–NE (representing accessions in the

whole collection), core collections formed by maximisation

of E–NE or E–E perform even poorer than random sam-

pling. On the other hand, the performance of core collec-

tions formed by minimising A–NE performed poorly when

evaluated using E–NE or E–E criteria (see Figs. 7, 8). This

shows that when selecting a core collection, it is essential

to define the objectives clearly and the objectives should be

Table 4 Examples of Core collections from literature showing data and criteria used for their evaluating them

Paper (Core) Data use for

selection

Data use for

evaluation

Criteria use for evaluation

Soybean core collection (Oliveira et al. 2010) P, A, M A, M Summary statistics, Chi-square,

correlations

Sorghum mini-core (Upadhyaya et al. 2009) P, A, M P, A, M Summary statistics, Chi-square, SH,

correlation

Mini-core Japanese rice landraces (Ebana

et al. 2008)

Markers Markers, A Percentage of alleles retained, summary

statistics

Peanut (Valencia) (Dwivedi et al. 2008) P, A, M P, A, M Summary statistics, Chi-square, SH,

correlation

A worldwide bread wheat (Balfourier et al.

2007)

P, Markers P, Markersa Alleles captured, countries of origins

represented

Pearl millet (Bhattacharjee 2007) P, A, M P, A, M Summary statistics, Chi-square, SH,

correlation

World sesame (Mahajan et al. 2007) P, A, M A, M Summary statistics, correlations, SH, PCA

West African yam Dioscorea spp.

(Mahalakshmi et al. 2007)

P, A, M A Summary statistics, correlation,

Chi-square, SH

USDA rice (Yan et al. 2007) P A, Ma Summary statistics, correlation

Korean Sesame core (Kang et al. 2006) P, A, M A, M Summary statistics, Chi-square PCA

Pigeon pea (Reddy et al. 2005) P, A, M P, A, M Summary statistics, Chi-square, SH,

correlation

Iberia Peninsula common beans (Rodino

et al. 2003)

P A, M Summary statistics, Chi-square

Groundnuts (Upadhyaya 2003) P, M M Summary statistics, Chi-square, SH,

correlation

Sesame -China (Xiurong et al. 2000) P, A, M A, M Summary statistics

Indian Mung Beans (Bisht et al. 1998) A, M Ma Summary statistics, PC, SH

Perennial Medicago (Basigalup et al. 1995) P, A, M A, M Summary statistics

Annual Medicago (Diwan et al. 1994) P, A, M P, A, Ma Summary statistics

A Agronomic data, M Morphological data, P Passport data, PCA Principle component analysis, SH Shannon Diversity Index
a Part or all the data used for the evaluation was different from the one used for forming the core collection
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the basis for choosing the evaluation criteria. It is clear

from these two examples that if one evaluates a core col-

lection of type CC–X with inappropriate criteria (e.g. A–

NE instead of E–NE or E–E) there is a high likelihood of

drawing a wrong conclusion. The poor performance of core

collections formed by maximising A–NE (CC–I type of

core collection) when evaluated using E–NE and E–E

indicates the challenges of constructing a single ‘‘multi-

purpose’’ core collection from which one could extract

material of interest. However, the poor performance of the

core obtained by minimising A–NE when accessed using

E–NE or E–E does not mean that such core collections do

not have accessions with extreme characteristics. In CC–I

type of core collections accessions with extreme characters

are those one that represent themselves (i.e. CC–I core put

emphasis on both accessions with common and rare traits).

Fig. 6 Plot of Average distance

between each accessions and its

nearest entry in the core (A–NE)

against different sizes of

collections formed by

optimising (minimising or

maximising) different criteria

(E–E, E–NE, A–NE and

Random sampling) using

Coconut (a) and Common beans

(b)

Fig. 7 Plot of average distances between the entries in the core

collection (E–E) (a) and average distance between an entry and the

nearest neighbouring entry (E–NE) (b) against the size of core

collection for cores formed by optimising different criteria (E–E,

E–NE, A–NE and random sampling) for Coconut data (1,014

accessions)
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We have shown in Figs. 7 and 8 that for both crops a

core collection that maximises E–NE also performs

(maximises) very well with respect to E–E but the reverse

is not always true (i.e. maximising E–E can result in a

much lower value of E–NE since similar accessions at the

extreme ends of the distributions can be included in the

core). In general, for both coconut and common beans, data

sets comparison based on E–E is less responsive to changes

within the core collection introduced by either changing the

number of entries (5–100) or changes in the optimisation

methods used for forming the core collection. For example,

for both crops (Figs. 7, 8), the changes in E–E between a

core with a size of 5 and a size of 100 ranges between 1.5

and 12 % compared to the changes in E–NE, which lies

between 18 and 54 %. The little response of E–E to

changes within the core collection is due to the fact that as

the core collection size increases, the average distance

between entries (E–E) tends towards the overall mean of

distances between accessions in the whole collection (the

E–E line of random sampling; Figs. 7a, 8a). This is a clear

indication that although both E–NE and E–E can be used

for evaluating the quality CC–X type of core collection,

E–NE appears to be more reliable.

Use of different data sets for evaluating core collections

In this subsection we show that a core collection obtained

by optimising a given criterion using one set of variables

(data set) may not be optimal for another set of variables.

The evaluation of a core collection with the same data set

that was used to create it ignores this simple but very

important point. This is quite important, especially in the

case of molecular markers data where the key assumption

is that by maximising diversity in a given set of marker

loci, the diversity of genes of interest will also be maxi-

mised. In this study we randomly divided the two datasets

into two equal datasets in terms of the number of molecular

markers (18 and 15 markers each for bean and coconut

datasets, respectively). For each crop, one half of the data

was used to form the core collection (training dataset) and

the other half used for evaluation of the resulting core

collection (evaluation set). For the evaluation set we first

determined the maximum (for E–NE) and minimum (A–

NE) possible value of the evaluation criteria. We referred

to this maximum or minimum possible value attainable

from evaluation set as Target (E–NE or A–NE), while

Actual (E–ENE or A–NE) values are obtained when core

collections that were created using the core/training set and

evaluated using the evaluation set. The core collections

formed were of the same samples sizes as those formed in

the previous subsection (5, 10, 15, …, 100). Randomly

generated core collections of the same sizes were also

evaluated.

It is clear from Fig. 9 that major differences may occur

between the unknown value we intend to optimise (Target)

and the actual value obtained when the core is formed

using training set and evaluated using another set of data

(Actual). Although the core collections obtained by opti-

mising both E–NE and A–NE performed better than ran-

dom sampling in capturing unknown diversity, the

differences are quite small (5–15 % for E–NE and 1–5 %

for A–NE). A similar result was also observed with the

coconut data (see Electronic Supplementary Material:

Appendix 2). Ronfort et al. (2006) found very little gain in

Fig. 8 Plot of average distances

between the entries in the core

collection (E–E) (a) and average

distance between an entry and

the nearest neighbouring entry

(E–NE) (b) against the size of

core collection for cores formed

by optimising different criteria

(E–E, E–NE, A–NE and random

sampling) for Common bean

(515 accessions) data
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the total number of alleles captured using the H and M

strategy (Schoen and Brown, 1995) over random sampling

when evaluation was done using a different set of data.

The H strategy seeks to maximise the total number of

alleles in the core collection by sampling accessions from

groups in proportion to their within-group genetic diver-

sity. On the other hand, the M strategy examines all

possible core collections and singles out those that max-

imise the number of observed alleles at the marker loci.

Their (Ronfort et al. 2006) major explanation was that the

set of inbred lines used in the study had no redundancy,

leaving little room for optimisation to improve the results

over and above random sampling. The relatively small

gain in our case is probably due to limited size (number

of markers) and questionable quality of the data. For a

data set with limited structure, we expect little gain by

minimising A–NE compared to random sampling and this

could explain the small difference observed in the com-

mon bean data, i.e. splitting the common bean data into

two sets weakened the group structure of the data and

thus resulting in very little gain.

For both crops the correlation between distance

matrices formed by the two halves (core and evaluation)

of the data was not very high, i.e. bean (0.79) and coconut

(0.63). It is therefore not very surprising that when core

collections are created using one half of the data set they

perform rather poorly when evaluated with the other half

of the data set.

Conclusions and recommendations

A critical examination of the different methods for the

evaluating the quality of core collections used in the lit-

erature shows that the choices of criteria for evaluating

core collections are sometimes made arbitrarily, resulting

in false conclusions regarding the quality of core collec-

tions and the methods to select them. The criterion of

choice for evaluating the quality of core collections should

be determined by the objectives or type of the core col-

lection. If the core collection is made to represent the

accessions in the collection (CC–I), the evaluation criterion

should reflect that, and a criterion such as the A–NE we

proposed in this paper should be used. If the core is to

represent the range of genotypes and/or phenotypes in the

collection (CC–X), a criterion such as the E–NE should be

used. In addition, we stress that whenever possible or

appropriate, the evaluation of core collections should be

based on data that have not been used for the selection of

the accessions for the core collection. When the core col-

lection is intended for a specific user, the quality will have

to be determined in terms of fitness-for-use such as the ease

with which certain groups of material can be used or the

likelihood of finding traits of interest.

In summary, we introduced two genetic distance-based

criteria (A–NE and E–NE) for evaluating the quality of core

collections. We strongly recommend distance-based criteria

mainly for two reasons: (a) they combine information from

Fig. 9 Plot of average distance between an entry and the nearest

neighbouring entry (E–NE) (a) and average distance between each

accessions and its nearest entry in the core (A–NE) (b) against the

size of core collection for bean data set. The bean data set was split

into two halves with one half used to form collection and the other

half used for evaluation of the core. Target (E–NE and A–NE) values

are the maximum (E–ENE) or minimum (A–NE) possible values for

each criterion for the half of the data used for evaluation (evaluation

set), while actual (E–ENE and A–NE) values are obtained from a core

collections that were using one half (training set) and evaluated using

the quality evaluation half of the data (evaluation set)

Theor Appl Genet (2013) 126:289–305 303

123



all traits simultaneously, instead of using one trait at a time

as most of the evaluation criteria used in literature do;

(b) they are intuitive, easy to interpret and relate to the

concept of representation of genetic diversity. These two

newly proposed distance-based criteria are suitable for

evaluating the two important types of core collections (CC–

I and CC–X). These evaluation criteria can also be used as

optimisation criteria when creating the core collections.
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